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Introduction 
 
 
This paper provides an overview of the Cell-based 
Terrain Rendering Engine (TRE). It discusses ray-
casting as a rendering technique, the challenges of ray-
casting on the Cell microprocessor, the software 
organization of the TRE, and the resulting 
performance.  This paper is meant to be an overview 
of these topics, not a deep dive.  
 
Ray-casting Overview 
 
The TRE uses a highly optimized height field ray-
caster to render images.  Ray-casting, like ray-tracing, 
follows mathematical rays of light from the viewer’s 
virtual eye, through the view plane, and into the 
virtual world.  The first location where the ray is 
found to intersect the terrain is considered to be the 
visible surface. Unlike ray-tracing which generates 
additional secondary rays from the first point of 
intersection to evaluate reflected and refracted light, 
ray-casting evaluates lighting with a more 
conventional approach.  At this first point of 
intersection a normal is computed to the surface and a 
surface shader is evaluated to determine the 
illumination of the sample.  Ray-casting has the 
performance advantage, unlike polygon rendering, of 
only evaluating the visible samples.  The challenge of 
producing a high performance ray-caster is finding the 
first intersection as efficiently as possible.  While ray-
casting is inherently a data-parallel computational 
problem, the entire scene must be considered during 
each ray intersection test. 
 
The TRE is optimized to render height fields which 
are 2D arrays of height values that represent the 
surface to be viewed.  A technique call “vertical ray 
coherence [1]” was used to optimize the ray-casting of 
such surfaces.  This optimization uses "vertical cuts", 
which are half-planes perpendicular to the plane of the 
height map, all radiating out from the vertical line 
containing the eye point.  Each such vertical cut slices 
the view plane in a not-necessarily-vertical line [figure 
1].  The big advantage is that all the information 
necessary to compute all of the samples in that vertical 
cut is contained in a close neighborhood of the 
intersection between the vertical cut and the height 
map.  Furthermore, each sample in the vertical cut, 
when computed from the bottom to top, only needs to 
consider the height data found in the buffer starting at 
the last known intersection.  These two optimizations: 
 

a) Greatly reduce the amount of height data 
that needs to be considered when processing 
each vertical cut of samples. 

b) Continue to reduce the data that needs to be 
considered as the vertical cut is processed. 

 
Cell Processor Overview 
  
The Cell Processor consists of one dual-threaded 
Power Processor Element (PPE) with eight SIMD 
Synergistic Processor Elements (SPEs), along with an 
on-chip memory controller (MIC), and an on-chip 
controller for a configurable I/O interface (BIC) 
interconnect with a coherent on-chip Element 
Interconnect Bus (EIB) [5][9][figure 3][figure 4].   
 
The key attributes of this concept are: 
 
(1) A high frequency design, allowing the processor to 
operate at a low voltage and low power while 
maintaining high performance [6]. 
 
(2) Power Architecture® compatibility, to provide a 
conventional entry point for programmers, for 
virtualization and multi-OS support, and to be able to 
leverage IBM’s experience in designing and verifying 
symmetric multiprocessors (SMP). 
 
(3) SIMD architecture, supported by both the vector 
(VMX) extensions on the PPE and the SPE, as one of 
the means to improve game/media and scientific 
performance at improved power efficiency. 
 
(4) A power and area efficient PPE that implements 
the Power Architecture ISA and supports the high 
design frequency.  
 
(5) SPE with local memory, asynchronous coherent 
DMA, and a large unified register file, in order to 
improve memory bandwidth and to provide a new 
level of combined power efficiency and performance 
[7][8]. 
 
(6) A high-bandwidth on-chip coherent fabric and 
high bandwidth memory, to deliver performance on 
memory bandwidth intensive applications and to allow 
for high-bandwidth on-chip interactions between the 
processor elements. 
 
(7) High bandwidth flexible I/O configurable to 
support a number of system organizations, including a 
single BE configuration with dual I/O interfaces, and a 
glue-less coherent dual processor configuration. 
 
(8) A full custom modular implementation to 
maximize performance per watt and performance per 
square mm of silicon and to facilitate the design of 
derivative products. 
 
These features enable the Cell Processor to excel at 
many rendering tasks including ray-casting.  The key 
to performance on the Cell processor is leveraging the 
SPEs efficiently by providing multiple independent 
data parallel tasks that optimize well in a SIMD 
processing environment.   
 



 
 
Ray-casting on Cell 
 
When implementing ray-casting of height fields we 
use vertical ray coherence to break down the rendering 
task into data parallel work blocks, or vertical cuts of 
screen space samples, using the PPE, and dispatching 
the blocks to ray kernels running on the SPEs.  It is 
key that the SPEs work as independently as possible 
so as to not over task the PPE, given the 8 to 1 ratio, 
and we don’t want the SPE’s streaming data flowing 
through the PPE’s cache hierarchy. These work blocks 
are therefore mathematical descriptions of the vertical 
cuts based on the current view parameters.  Where the 
plane intersects the view screen are the locations of 
the accumulation buffer to be modified [figure 1].  
Where the plane intersects the height map are the 
locations of the input height data needed to process the 
vertical cut of samples [figure 2]. The PPE 
communicates the range of work blocks each SPE is 
responsible for via base address, count, and stride 
information once per frame.  The SPE then uses this 
information to compute the address of each work 
block which is then read into local store via a DMA 
read and processed. This decouples the PPE from the 
vertical cut by vertical cut processing allowing it to 
prep the next frame in parallel.  The SPEs place the 
output samples in an accumulation buffer using a 
gather DMA read and a scatter DMA write.  Each SPE 
is responsible for four regions of the screen and the 
vertical cuts are processed in a round robin fashion, 
one vertical cut per region, and left to right within a 
each region, so no synchronization is need on the 
output as no two SPEs will ever attempt to modify the 
same locations in the accumulation buffer even with 
two vertical cuts in flight (double buffering) per SPE.  
The SPEs are therefore free to run at their own pace 
processing each vertical cut without any data 
synchronization on the input or output.  None of the 
SPE’s input or output data is touched by the PPE, 
thereby protecting the PPE’s cache hierarchy from 
transient streaming data. 
 
Ray Kernel 
 
Each SPE executes a ray kernel that consists of four 
functional code blocks. 
 

1) A command parser that looks for work in the 
mailbox and dispatches the proper code 
fragment. 

2) Load/store code that fetches the work blocks 
and computes the DMA lists to read the 
height/color data and write the accumulation 
data. 

3) Ray intersection code that searches for the 
first intersection of each ray and height data. 

4) Surface shader code that evaluates the 
surface at each intersection and computes 
the output color of each sample. 

 

The command parser runs on a per frame basis as 
work is communicated from the PPE.  Work is 
processed on a per vertical cut basis where a work 
block is fetched, DMA lists for the input data are 
computed, intersections are located, samples are 
evaluated with the surface shader, and then written 
back to the accumulation buffer.  Within each SPE the 
ray kernel processes the data using double buffered 
inputs and outputs so as to cover up the memory 
latency and data load time.  Height and accumulation 
data is brought in for vertical cut n+1 while samples 
are computed for vertical cut n.  Texture color 
information is interleaved into the height map for each 
location, 16 bits of color (5/6/5) and 16 bits of height, 
so both are in vector registers when the intersection is 
located [figure 6].  The SPE’s DMA engine is 
optimized to fetch multiples of quad words (128 bits) 
and the surface shader requires a four by four 
neighborhood to evaluate the normal so the 
interleaved height/color data structure works well.  
Samples are computed in a SIMD fashion by 
searching for four intersections at a time and when all 
four are located they are then evaluated in parallel by 
the surface shader.   
 
The surface shader provides both terrain illumination 
and atmospheric effects.  The current shader contains 
the following functionality: 
 

1) Surface normal computation via four by four 
height neighborhood 

2) Texture filtering via a two by two color 
neighborhood. 

3) Bump mapping via a normal perturbation 
function [3] 

4) Surface illumination via diffuse reflection 
and ambient lighting model. 

5) Visible sun plus halo effects 
6) Non-linear atmospheric haze 
7) Non-linear ground fog 
8) Resolution independent Clouds computed 

via multiple octaves of Perlin noise 
evaluated on the fly [4]. 

 
Dynamic multi-sampling is implemented by adjusting 
the distance between rays along the vertical axis 
(vertical cut) based on the under or over sampling of 
the prior four rays [2]. The sampling rate along the 
horizontal axis is a function of the size of the image, 
and is computed to ensure that no pixel is skipped over, 
even after accounting for round off error. 
 
The resulting IBM XLC compiled C code occupies 
30KB of local store and uses 212KB of buffer space 
plus 5KB of stack.   
 
Image Compression Kernel 
 
In addition to the SPEs running the ray-kernels one 
SPE is reserved for image compression.  The 
compression kernel operates on the finished 
accumulation buffer which is organized in a column 



major 2D array of single precision floating point (red, 
green, blue, count) data, one float per channel. The 
count channel contains the number of samples 
accumulated in the pixel. The image compression 
kernel is responsible for the following tasks: 
 

1) Normalization of the accumulation buffer 
2) Compression of the normalized buffer. 
3) Clearing of the accumulation buffer 

 
The compression kernel reads sixteen by sixteen pixel 
tiles from the accumulation buffer into local store 
using DMA lists.  These tiles are then normalized by 
dividing the color channels by the sample count for 
each pixel.  The tile is then compressed using a multi-
stage process involving color conversion, discrete 
cosine transformation (DCT), quantization, and run 
length encoding.  The resulting compressed data is 
then written to a holding buffer in local store which 
when full is DMA written back to system memory for 
network delivery.  As each tile is processed a tile of 
zeros is returned to the accumulation buffer providing 
the clear operation. 
 
TRE System Components 
 
The TRE was implemented using a client server model.  
The client, implemented on an Apple G5 system, is 
connected to the server via a gigabit Ethernet.  The 
client specifies the map, path, and rendering 
parameters to the server which in turn streams 
compressed images back to the client for display. 
 
TRE Server 
 
The TRE server, implemented on the STIDC Bring-up 
boards, runs in both a uni-processor (UP) and 
symmetric multi-processor (SMP) mode [figure 5].  
The server scales across as many SPEs as there are 
available in the system. One SPE is reserved for image 
compression and the remaining available SPEs run ray 
kernels.  Three threads execute on the available Muti-
Threading (MT) slots of the PPE. The three threads 
responsibilities break down as follows: 
 

1) Frame preparation and SPE work 
communication. 

2) Network tasks involving image delivery. 
3) Network tasks involving client 

communication. 
 
Thread one requires the most processor resource 
followed by threads two and three, so threads two and 
three share the same MT processor affinity in the uni-
processor model. 
 
The server implements a three frame deep pipeline to 
exploit all the parallelism in the Cell processor.  In 
stage one, the image preparation phase, PPE thread 
one decomposes the view screen into work blocks 
based on the vertical cuts dictated by the view 
parameters.  Stage two, the sample generation phase, 

is where the SPEs decompose the vertical cuts into 
samples and store them in the accumulation buffer.  In 
stage three, the image compression/network phase, the 
compression SPE encodes the finished accumulation 
buffer and PPE thread two delivers it to the network 
layer.  All three stages are simultaneously active on 
different execution cores of the chip maximizing the 
image throughput. 
 
TRE Client 
 
The TRE client directs the rendering of the TRE 
server.  It provides for the following facilities: 
 

1) Map loading and delivery to the server 
2) Smooth path generation both user directed 

and random. 
3) Joy stick directed paths 
4) Rendering parameter modification 

a. Sun angle 
b. Lighting parameters 
c. Fog and haze control 
d. Output image size 

5) Server connection and selection 
6) Map cropping 
7) Streaming image decompression and display 

 
TRE Performance 
 
The server has many rendering parameters that effect 
performance including: 
 

1) Output image size 
2) Map size 
3) Visibility to full fog/haze 
4) Multi-sampling rate 

 
For benchmarking purposes the following values will 
be selected [figure 7]: 
 

1) 1280x720 (720p) output image size 
2) 7455x8005 Map size 
3) 2048 map steps to full haze (10m map -> 

20Km visibility) 
4) 1.33 x (2 – 8 Dynamic) or ~2-32 samples 

per pixel 
 
With these settings the following rendered and 
compressed relative image rates were captured: 
 
Processor   Performance 
 
2.0 GHz G5 VMX  1 (No Image Encode) 
 
2.4 GHz UP Cell  36 
3.2 GHz UP Cell  50 
2.4 GHz 2-way SMP Cell 75 
 
The dependency-reducing 128 vector registers and 
throughput boost of dual issue enable the SPE to 
execute the ray kernel at an impressive 0.70 to 0.80 
cycles per instruction (CPI).  The two blocks of code 



that account for the majority of ray kernel cycles are 
the intersection test and shader.  The intersection test 
is broken into two phases, the first searches for the 
initial ray’s intersection and the second more carefully 
finds each intersection for rays in the vertical cut 
thereafter.  The compute and data fetch phases of the 
ray kernel execute in parallel by exploiting the 
asynchronous execution of the SPE’s DMA engine 
(SMF) and SIMD core (SPU).  Multiple input and 
output buffers are used to decouple the two phases. 
   
Conclusion 
 
In this paper we have outlined how a compute 
intensive graphics technique, ray-casting, can be 
decomposed into data parallel work blocks and 
executed efficiently on multiple SIMD cores within 
one or multiple Cell processors.  We have also shown 
that by pipelining the work block preparation, 
execution, and the delivery of results, additional 
parallelism within the Cell processor can be exploited.  
One order of magnitude performance improvements 
over similarly clocked single threaded processors can 
be achieved when computational problems are 
decomposed and executed in this manner on Cell.  
Graphics techniques once considered offline tasks can 
now be executed at interactive speeds using a 
commodity processor. 
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Figure 1: Height Field Ray-Casting. 



 
 
Figure 2: Height Field Ray-Casting overhead.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Cell Processor block diagram. 
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Figure 4: Cell processor die photo. 
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Figure 5: Cell processor configurations. 
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Figure 6: TRE Input Data. 
 
 



  

 
Figure 7: TRE Output 
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