

Terrain Rendering Engine (TRE)

May 13th, 2005

Introduction

This paper provides an overview of the Cell-based
Terrain Rendering Engine (TRE). It discusses ray-
casting as a rendering technique, the challenges of ray-
casting on the Cell microprocessor, the software
organization of the TRE, and the resulting
performance. This paper is meant to be an overview
of these topics, not a deep dive.

Ray-casting Overview

The TRE uses a highly optimized height field ray-
caster to render images. Ray-casting, like ray-tracing,
follows mathematical rays of light from the viewer’s
virtual eye, through the view plane, and into the
virtual world. The first location where the ray is
found to intersect the terrain is considered to be the
visible surface. Unlike ray-tracing which generates
additional secondary rays from the first point of
intersection to evaluate reflected and refracted light,
ray-casting evaluates lighting with a more
conventional approach. At this first point of
intersection a normal is computed to the surface and a
surface shader is evaluated to determine the
illumination of the sample. Ray-casting has the
performance advantage, unlike polygon rendering, of
only evaluating the visible samples. The challenge of
producing a high performance ray-caster is finding the
first intersection as efficiently as possible. While ray-
casting is inherently a data-parallel computational
problem, the entire scene must be considered during
each ray intersection test.

The TRE is optimized to render height fields which
are 2D arrays of height values that represent the
surface to be viewed. A technique call “vertical ray
coherence [1]” was used to optimize the ray-casting of
such surfaces. This optimization uses "vertical cuts",
which are half-planes perpendicular to the plane of the
height map, all radiating out from the vertical line
containing the eye point. Each such vertical cut slices
the view plane in a not-necessarily-vertical line [figure
1]. The big advantage is that all the information
necessary to compute all of the samples in that vertical
cut is contained in a close neighborhood of the
intersection between the vertical cut and the height
map. Furthermore, each sample in the vertical cut,
when computed from the bottom to top, only needs to
consider the height data found in the buffer starting at
the last known intersection. These two optimizations:

a) Greatly reduce the amount of height data
that needs to be considered when processing
each vertical cut of samples.

b) Continue to reduce the data that needs to be
considered as the vertical cut is processed.

Cell Processor Overview

The Cell Processor consists of one dual-threaded
Power Processor Element (PPE) with eight SIMD
Synergistic Processor Elements (SPEs), along with an
on-chip memory controller (MIC), and an on-chip
controller for a configurable I/O interface (BIC)
interconnect with a coherent on-chip Element
Interconnect Bus (EIB) [5][9][figure 3][figure 4].

The key attributes of this concept are:

(1) A high frequency design, allowing the processor to
operate at a low voltage and low power while
maintaining high performance [6].

(2) Power Architecture® compatibility, to provide a
conventional entry point for programmers, for
virtualization and multi-OS support, and to be able to
leverage IBM’s experience in designing and verifying
symmetric multiprocessors (SMP).

(3) SIMD architecture, supported by both the vector
(VMX) extensions on the PPE and the SPE, as one of
the means to improve game/media and scientific
performance at improved power efficiency.

(4) A power and area efficient PPE that implements
the Power Architecture ISA and supports the high
design frequency.

(5) SPE with local memory, asynchronous coherent
DMA, and a large unified register file, in order to
improve memory bandwidth and to provide a new
level of combined power efficiency and performance
[7][8].

(6) A high-bandwidth on-chip coherent fabric and
high bandwidth memory, to deliver performance on
memory bandwidth intensive applications and to allow
for high-bandwidth on-chip interactions between the
processor elements.

(7) High bandwidth flexible I/O configurable to
support a number of system organizations, including a
single BE configuration with dual I/O interfaces, and a
glue-less coherent dual processor configuration.

(8) A full custom modular implementation to
maximize performance per watt and performance per
square mm of silicon and to facilitate the design of
derivative products.

These features enable the Cell Processor to excel at
many rendering tasks including ray-casting. The key
to performance on the Cell processor is leveraging the
SPEs efficiently by providing multiple independent
data parallel tasks that optimize well in a SIMD
processing environment.

Ray-casting on Cell

When implementing ray-casting of height fields we
use vertical ray coherence to break down the rendering
task into data parallel work blocks, or vertical cuts of
screen space samples, using the PPE, and dispatching
the blocks to ray kernels running on the SPEs. It is
key that the SPEs work as independently as possible
so as to not over task the PPE, given the 8 to 1 ratio,
and we don’t want the SPE’s streaming data flowing
through the PPE’s cache hierarchy. These work blocks
are therefore mathematical descriptions of the vertical
cuts based on the current view parameters. Where the
plane intersects the view screen are the locations of
the accumulation buffer to be modified [figure 1].
Where the plane intersects the height map are the
locations of the input height data needed to process the
vertical cut of samples [figure 2]. The PPE
communicates the range of work blocks each SPE is
responsible for via base address, count, and stride
information once per frame. The SPE then uses this
information to compute the address of each work
block which is then read into local store via a DMA
read and processed. This decouples the PPE from the
vertical cut by vertical cut processing allowing it to
prep the next frame in parallel. The SPEs place the
output samples in an accumulation buffer using a
gather DMA read and a scatter DMA write. Each SPE
is responsible for four regions of the screen and the
vertical cuts are processed in a round robin fashion,
one vertical cut per region, and left to right within a
each region, so no synchronization is need on the
output as no two SPEs will ever attempt to modify the
same locations in the accumulation buffer even with
two vertical cuts in flight (double buffering) per SPE.
The SPEs are therefore free to run at their own pace
processing each vertical cut without any data
synchronization on the input or output. None of the
SPE’s input or output data is touched by the PPE,
thereby protecting the PPE’s cache hierarchy from
transient streaming data.

Ray Kernel

Each SPE executes a ray kernel that consists of four
functional code blocks.

1) A command parser that looks for work in the
mailbox and dispatches the proper code
fragment.

2) Load/store code that fetches the work blocks
and computes the DMA lists to read the
height/color data and write the accumulation
data.

3) Ray intersection code that searches for the
first intersection of each ray and height data.

4) Surface shader code that evaluates the
surface at each intersection and computes
the output color of each sample.

The command parser runs on a per frame basis as
work is communicated from the PPE. Work is
processed on a per vertical cut basis where a work
block is fetched, DMA lists for the input data are
computed, intersections are located, samples are
evaluated with the surface shader, and then written
back to the accumulation buffer. Within each SPE the
ray kernel processes the data using double buffered
inputs and outputs so as to cover up the memory
latency and data load time. Height and accumulation
data is brought in for vertical cut n+1 while samples
are computed for vertical cut n. Texture color
information is interleaved into the height map for each
location, 16 bits of color (5/6/5) and 16 bits of height,
so both are in vector registers when the intersection is
located [figure 6]. The SPE’s DMA engine is
optimized to fetch multiples of quad words (128 bits)
and the surface shader requires a four by four
neighborhood to evaluate the normal so the
interleaved height/color data structure works well.
Samples are computed in a SIMD fashion by
searching for four intersections at a time and when all
four are located they are then evaluated in parallel by
the surface shader.

The surface shader provides both terrain illumination
and atmospheric effects. The current shader contains
the following functionality:

1) Surface normal computation via four by four
height neighborhood

2) Texture filtering via a two by two color
neighborhood.

3) Bump mapping via a normal perturbation
function [3]

4) Surface illumination via diffuse reflection
and ambient lighting model.

5) Visible sun plus halo effects
6) Non-linear atmospheric haze
7) Non-linear ground fog
8) Resolution independent Clouds computed

via multiple octaves of Perlin noise
evaluated on the fly [4].

Dynamic multi-sampling is implemented by adjusting
the distance between rays along the vertical axis
(vertical cut) based on the under or over sampling of
the prior four rays [2]. The sampling rate along the
horizontal axis is a function of the size of the image,
and is computed to ensure that no pixel is skipped over,
even after accounting for round off error.

The resulting IBM XLC compiled C code occupies
30KB of local store and uses 212KB of buffer space
plus 5KB of stack.

Image Compression Kernel

In addition to the SPEs running the ray-kernels one
SPE is reserved for image compression. The
compression kernel operates on the finished
accumulation buffer which is organized in a column

major 2D array of single precision floating point (red,
green, blue, count) data, one float per channel. The
count channel contains the number of samples
accumulated in the pixel. The image compression
kernel is responsible for the following tasks:

1) Normalization of the accumulation buffer
2) Compression of the normalized buffer.
3) Clearing of the accumulation buffer

The compression kernel reads sixteen by sixteen pixel
tiles from the accumulation buffer into local store
using DMA lists. These tiles are then normalized by
dividing the color channels by the sample count for
each pixel. The tile is then compressed using a multi-
stage process involving color conversion, discrete
cosine transformation (DCT), quantization, and run
length encoding. The resulting compressed data is
then written to a holding buffer in local store which
when full is DMA written back to system memory for
network delivery. As each tile is processed a tile of
zeros is returned to the accumulation buffer providing
the clear operation.

TRE System Components

The TRE was implemented using a client server model.
The client, implemented on an Apple G5 system, is
connected to the server via a gigabit Ethernet. The
client specifies the map, path, and rendering
parameters to the server which in turn streams
compressed images back to the client for display.

TRE Server

The TRE server, implemented on the STIDC Bring-up
boards, runs in both a uni-processor (UP) and
symmetric multi-processor (SMP) mode [figure 5].
The server scales across as many SPEs as there are
available in the system. One SPE is reserved for image
compression and the remaining available SPEs run ray
kernels. Three threads execute on the available Muti-
Threading (MT) slots of the PPE. The three threads
responsibilities break down as follows:

1) Frame preparation and SPE work
communication.

2) Network tasks involving image delivery.
3) Network tasks involving client

communication.

Thread one requires the most processor resource
followed by threads two and three, so threads two and
three share the same MT processor affinity in the uni-
processor model.

The server implements a three frame deep pipeline to
exploit all the parallelism in the Cell processor. In
stage one, the image preparation phase, PPE thread
one decomposes the view screen into work blocks
based on the vertical cuts dictated by the view
parameters. Stage two, the sample generation phase,

is where the SPEs decompose the vertical cuts into
samples and store them in the accumulation buffer. In
stage three, the image compression/network phase, the
compression SPE encodes the finished accumulation
buffer and PPE thread two delivers it to the network
layer. All three stages are simultaneously active on
different execution cores of the chip maximizing the
image throughput.

TRE Client

The TRE client directs the rendering of the TRE
server. It provides for the following facilities:

1) Map loading and delivery to the server
2) Smooth path generation both user directed

and random.
3) Joy stick directed paths
4) Rendering parameter modification

a. Sun angle
b. Lighting parameters
c. Fog and haze control
d. Output image size

5) Server connection and selection
6) Map cropping
7) Streaming image decompression and display

TRE Performance

The server has many rendering parameters that effect
performance including:

1) Output image size
2) Map size
3) Visibility to full fog/haze
4) Multi-sampling rate

For benchmarking purposes the following values will
be selected [figure 7]:

1) 1280x720 (720p) output image size
2) 7455x8005 Map size
3) 2048 map steps to full haze (10m map ->

20Km visibility)
4) 1.33 x (2 – 8 Dynamic) or ~2-32 samples

per pixel

With these settings the following rendered and
compressed relative image rates were captured:

Processor Performance

2.0 GHz G5 VMX 1 (No Image Encode)

2.4 GHz UP Cell 36
3.2 GHz UP Cell 50
2.4 GHz 2-way SMP Cell 75

The dependency-reducing 128 vector registers and
throughput boost of dual issue enable the SPE to
execute the ray kernel at an impressive 0.70 to 0.80
cycles per instruction (CPI). The two blocks of code

that account for the majority of ray kernel cycles are
the intersection test and shader. The intersection test
is broken into two phases, the first searches for the
initial ray’s intersection and the second more carefully
finds each intersection for rays in the vertical cut
thereafter. The compute and data fetch phases of the
ray kernel execute in parallel by exploiting the
asynchronous execution of the SPE’s DMA engine
(SMF) and SIMD core (SPU). Multiple input and
output buffers are used to decouple the two phases.

Conclusion

In this paper we have outlined how a compute
intensive graphics technique, ray-casting, can be
decomposed into data parallel work blocks and
executed efficiently on multiple SIMD cores within
one or multiple Cell processors. We have also shown
that by pipelining the work block preparation,
execution, and the delivery of results, additional
parallelism within the Cell processor can be exploited.
One order of magnitude performance improvements
over similarly clocked single threaded processors can
be achieved when computational problems are
decomposed and executed in this manner on Cell.
Graphics techniques once considered offline tasks can
now be executed at interactive speeds using a
commodity processor.

References

[1] Cheol-Hi Lee, “A Terrain Rendering Method

Using Vertical Ray Coherence”, The Journal of

Visualization and Computer Animation

[2] Cohen-Or, D., Rich, E. Lerner, U., and Shenkar, V.,

“A real-time photo-realistic visual flythrough,”

IEEE® Trans, Vis. Comp. Graph., Vol 2, No 3,

September 1996.

[3] Blinn, "Simulation of Wrinkled Surfaces",

Computer Graphics, (Proc. Siggraph), Vol. 12, No. 3,

August 1978, pp. 286-292.

[4] Perlin, Ken, "Making noise,"
http://www.noisemachine.com/talk1/

[5] H. Peter Hofstee, “Power Efficient Processor
Architecture and the Cell Processor”, to appear,
Proceedings 11th Conference on High Performance
Computing Architectures, Feb. 2005.

[6] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose,
V.Zyuban, P.N. Strenski, and P.G. Emma “Optimizing
pipelines for power and performance,” in Conf. Proc.
35th Annual IEEE/ACM International Symposium on
Microarchitecture 2002. pp. 333-344.

[7] B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee. G.
Gervais, R. Kim, T. Le, P. Liu, J. Leenstra, J. Liberty,
B. Michael, H-J. Oh, S. M. Mueller, O. Takahashi, A.
Hatakeyama, Y. Watanabe, N. Yano. “The
Microarchitecture of the Streaming Processor for a
CELL Processor,” IEEE International Solid-State
Circuits Symposium, Feb. 2005.

[8] T. Asano, T. Nakazato, S. Dhong, A. Kawasumi, J.
Silberman, O. Takahashi, M. White, H. Yohsihara, “A
4.8GHz Fully Pipelined Embedded SRAM in the
Streaming Processor of a CELL processor”, IEEE
International Solid-State Circuits Symposium, Feb.
2005.

[9] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P.
Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty,
Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M.
Suzuoki, M. Wang, J. Warnock, S. Weitzel, D.
Wendel, T. Yamazaki, K. Yazawa, “The Design and
Implementation of a First-Generation CELL
Processor,” IEEE International Solid-State Circuits
Symposium, Feb. 2005.

Figure 1: Height Field Ray-casting.
Figure 2: Height Field Ray-casting overhead.
Figure 3: Cell Processors block diagram.
Figure 4: Cell Processor Die Photo.
Figure 5: Cell Processor configurations.
Figure 6: TRE Input Data.
Figure 7: TRE Output.

Figure 1: Height Field Ray-Casting.

Figure 2: Height Field Ray-Casting overhead.

Figure 3: Cell Processor block diagram.

Element Interconnect Bus 96B/cycle

BIU

L2

64b

Power
Architecture

Core

Mem.
Contr.

Interface
Contr.

SMF

SPU

SMF

SPU

SMF

SPU

SMF

SPU

SMF

SPU

SMF

SPU

SMF

SPU

SMF

SPU

Figure 4: Cell processor die photo.

P
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

S
P
U

M
I
C

R
R
A
C

B
I
C

MI

Figure 5: Cell processor configurations.

Cell
Processor

XDRtm XDRtm

IOIF0 IOIF1

Cell
Processor

XDRtm XDRtm

IOIF BIF

Cell
Processor

XDRtm XDRtm

IOIF

Uni-processor (UP)

Symmetric multi-processor (SMP)

Figure 6: TRE Input Data.

Figure 7: TRE Output

Authored by IBM

Barry Minor, bminor@us.ibm.com
Gordon Fossum, fossum@us.ibm.com
Van To, vto@us.ibm.com

© IBM Corporation 2005
IBM Corporation
Systems and Technology Group
Route 100
Somers, New York 10589

Produced in the United States of America
May 2005
All Rights Reserved
This document was developed for products and/or services offered in the United States.
IBM may not offer the products, features, or services discussed in this document in other
countries.
The information may be subject to change without notice. Consult your local IBM
business contact for information on the products, features and services available in your
area.
All statements regarding IBM future directions and intent are subject to change or
withdrawal without notice and represent goals and objectives only.
IBM, the IBM logo, Power Architecture, are trademarks or registered trademarks of
International Business Machines Corporation in the United States or other countries or
both. A full list of U.S. trademarks owned by IBM may be found at:
http://www.ibm.com/legal/copytrade.shtml.

IEEE and IEEE 802 are registered trademarks in the United States, owned by the Institute
of Electrical and Electronics Engineers. Other company, product, and service names may
be trademarks or service marks of others.
Photographs show engineering and design models. Changes may be incorporated in
production models. Copying or downloading the images contained in this document is
expressly prohibited without the written consent of IBM

All performance information was determined in a controlled environment. Actual results
may vary. Performance information is provided “AS IS” and no warranties or guarantees
are expressed or implied by IBM

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN
"AS IS" BASIS. In no event will IBM be liable for damages arising directly or indirectly
from any use of the information contained in this document.
The IBM home page on the Internet can be found at: http://www.ibm.com.

